
Zhen Yu1, Xiaosen Wang1,2, Wanxiang Che3,Kun He1

1 School of Computer Science, Huazhong University of Science and Technology
2 Huawei Singular Security Lab

3 Research Center for SCIR, Harbin Institute of Technology
Contact: baiding15@hust.edu.cn

TextHacker: Learning based Hybrid Local Search
Algorithm for Text Hard-label Adversarial Attack

December, 2022

mailto:baiding15@hust.edu.cn

Catalogue

Background & Motivation

TextHacker

Experimental Results

Summary

2

Textual Adversarial Example

DNNs in NLP tasks are known to be vulnerable to adversarial
examples, in which imperceptible modification on the correctly
classified samples could mislead the model.

Hard-label Attack: a kind of Black-Box Attack. Attacker can
only access the model hard prediction label, which is more
applicable in real-world scenarios but also more challenging.

Background: due to the limited information (i.e., only the
prediction labels) for hard-label attacks, it is hard to estimate
the word importance, leading to relatively low effectiveness
and efficiency on existing hard-label attacks.

3

Related works

Existing Hard-label Attacks usually contain two stages, namely
adversary initialization and perturbation optimization.

4

• HLBB [Maheshwary et al., 2021]: Adopts a genetic algorithm to search for the
optimal adversarial example at the perturbation optimization stage.

• TextHoaxer [Ye et al., 2022]: Optimizes the perturbation matrix in the continuous
embedding space to maximize the semantic similarity and minimize the number of
perturbed words.

Original text

Initial adversary

Optimal adversary

1. Adversary initialization

2. Perturbation optimization

Motivation

5

Adversary initialization

Synonym substitution

Original text

The label changes, indicating that
the word ‘love’ is important

The label has not changed, indicating
that the word ‘movie’ is less important

We learn the importance of each word based on the changes of
label which can guide us to minimize the word perturbation

（label: negative）
I love the movie a lot

（label: positive）
I like the film a lot

（label: positive）
I like the film a lot

（label: negative）
I love the movie a lot

（label: positive）
I like the movie a lot

（label: negative）
I love the film a lot

TextHacker: Symbols and Definitions

6

• Candidate set 𝐶𝐶 𝑤𝑤𝑖𝑖 : For each word 𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥, we construct
the candidate set 𝐶𝐶 𝑤𝑤𝑖𝑖 containing its top 𝑚𝑚 nearest
synonyms according to the distance in the embedding space.

• Weight table 𝑊𝑊 : A matrix with the shape of (𝑛𝑛,𝑚𝑚 + 1) with
all 0s, in which each item 𝑊𝑊𝑖𝑖,𝑗𝑗 represents the word importance
of �𝑤𝑤𝑖𝑖,𝑗𝑗 ∈ 𝐶𝐶 𝑤𝑤𝑖𝑖 and 𝑊𝑊𝑖𝑖,: = ∑𝑗𝑗=0𝑛𝑛 𝑊𝑊𝑖𝑖,𝑗𝑗 denotes the position
importance of word 𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥.

• 𝜹𝜹-neighborhood 𝑵𝑵𝜹𝜹 (𝒙𝒙) : A set of texts with at most δ
different words from the sample x:

𝑁𝑁𝛿𝛿 𝑥𝑥 = 𝑥𝑥𝑘𝑘 ∑𝑖𝑖=1𝑛𝑛 𝟙𝟙 𝑤𝑤𝑖𝑖𝑘𝑘 ≠ 𝑤𝑤𝑖𝑖 ≤ 𝛿𝛿
where 𝑤𝑤𝑖𝑖𝑘𝑘 ∈ 𝑥𝑥𝑘𝑘 ,𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥 and 𝛿𝛿 is the maximum radius of the

neighborhood.

TextHacker: Adversary Initialization

7

We randomly substitute each word with a candidate word to
craft a new text until we find an adversarial example.

TextHacker: Perturbation Optimization

8

We adopt the hybrid local search algorithm with the weight
table, a population-based algorithm that contains local search,
weight update and recombination operators, to minimize the
adversary perturbation.

• Local search greedily substitutes unimportant word with the original
word or critical word using the weight table to search for better
adversarial example from the δ-neighborhood.

• Weight update highlights the important words and positions by
assigning different reward for each operated word, which helps the local
search select more critical positions and synonyms to substitute.

• Recombination crafts non-improved solutions by randomly mixing two
adversarial examples, which globally changes the text to avoid poor
local optima.

TextHacker: Perturbation Optimization

9

Local Search:
1. We fist sample several (at most δ) words

�𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡 ∈ 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 with the probability 𝑝𝑝𝑖𝑖 from

all the perturbed words in 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎.

𝑝𝑝𝑖𝑖 =
1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)

∑𝑖𝑖=1
𝑛𝑛 [1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)]

2. Then, we substitute each chosen word
�𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡 with the original word �𝑤𝑤𝑖𝑖

0 or with

an arbitrary word �𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡+1 ∈ 𝐶𝐶(𝑤𝑤𝑖𝑖) using

the probability 𝑝𝑝𝑖𝑖,𝑗𝑗𝑡𝑡+1equally to generate
a new sample 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 .

𝑝𝑝𝑖𝑖 =
1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)

∑𝑖𝑖=1
𝑛𝑛 [1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)]

TextHacker: Perturbation Optimization

10

Weight Update updates the weight table according to the
results obtained by local search.

Given an adversarial example 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 at 𝑡𝑡-th iteration with the generated
adversary 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 by local search, we update the word importance of each

operated word �𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡 ∈ 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 and �𝑤𝑤𝑖𝑖

𝑗𝑗𝑡𝑡+1 ∈ 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 , and the position importance
of 𝑤𝑤𝑖𝑖 using the following rules:

Rule I: For each replaced word �𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡+1, if 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 is still adversarial, it has

positive impact on the adversary generation. So we increase its weight
W𝑖𝑖,𝑗𝑗𝑡𝑡+1, and vice versa.

Rule II: For each operated position 𝑖𝑖, if 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 is still adversarial, it has little
impact on the adversary generation. So we decrease the position weight
W𝑖𝑖,: , and vice versa.

TextHacker: Perturbation Optimization

11

In Summary:
We first utilize local search to construct an initial population.

Subsequently, we iteratively adopt recombination as well as local search
to minimize the adversary perturbation, and update the weight table after
each local search

Experimental Settings

• Dataset: AG’s News, IMDB, MR, Yelp and Yahoo! Answers
datasets for text classification. SNLI and MultiNLI dataset for
textual entailment.

• Models: WordCNN, WordLSTM and BERT for text
classification. BERT for textual entailment.

• Baselines: Two hard-label attacks, i.e., HLBB and TextHoaxer
and two score-based attacks, i.e., GA and PSO for reference.

• Hyper-parameters: Neighborhood size 𝛿𝛿 = 5, reward 𝑟𝑟 = 1,
population size 𝑆𝑆 = 4, maximum number of local search 𝑁𝑁 = 8.

12

Experimental Results

13

• Better attack performance than existing
hard-label attacks.

• Comparable or even better attack
performance than the advanced score-
based attacks.

Experimental Results

14

TextHacker consistently exhibits better attack performance under
various query budgets

Experimental Results

15

The evaluation on adversary quality demonstrates the high
lexicality, semantic similarity and fluency of the generated
adversarial examples of TextHacker

Experimental Results

16

The evaluation on real-world applications demonstrates
TextHacker is more practical in real-world scenarios.

Summary

17

• Propose a novel text hard-label attack, called TextHacker, which
captures the words that have higher impact on the adversarial
example via the changes on prediction label to guide the search
process at the perturbation optimization stage.

• Extensive evaluations for two typical NLP tasks, namely text
classification and textual entailment, using various datasets and
models demonstrate that TextHacker achieves higher attack
success rate and lower perturbation rate than existing hard-label
attacks and generates higher-quality adversarial examples.

Thanks!
Zhen Yu1, Xiaosen Wang1,2, Wanxiang Che3,Kun He1

1 School of Computer Science, Huazhong University of Science and Technology
2 Huawei Singular Security Lab

3 Research Center for SCIR, Harbin Institute of Technology
Contact: baiding15@hust.edu.cn

December, 2022

mailto:baiding15@hust.edu.cn

	TextHacker: Learning based Hybrid Local Search Algorithm for Text Hard-label Adversarial Attack
	Catalogue
	Textual Adversarial Example
	Related works
	Motivation
	TextHacker: Symbols and Definitions
	TextHacker: Adversary Initialization
	TextHacker: Perturbation Optimization
	TextHacker: Perturbation Optimization
	TextHacker: Perturbation Optimization
	TextHacker: Perturbation Optimization
	Experimental Settings
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Summary
	Thanks!

