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Textual Adversarial Example

DNNs in NLP tasks are known to be vulnerable to adversarial 
examples, in which imperceptible modification on the correctly 
classified samples could mislead the model.

Hard-label Attack: a kind of Black-Box Attack. Attacker can 
only access the model hard prediction label, which is more 
applicable in real-world scenarios but also more challenging.

Background: due to the limited information (i.e., only the 
prediction labels) for hard-label attacks, it is hard to estimate 
the word importance, leading to relatively low effectiveness 
and efficiency on existing hard-label attacks.
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Related works

Existing Hard-label Attacks usually contain two stages, namely 
adversary initialization and perturbation optimization.
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• HLBB [Maheshwary et al., 2021]: Adopts a genetic algorithm to search for the 
optimal adversarial example at the perturbation optimization stage.

• TextHoaxer [Ye et al., 2022]: Optimizes the perturbation matrix in the continuous 
embedding space to maximize the semantic similarity and minimize the number of 
perturbed words.

Original text

Initial adversary

Optimal adversary

1. Adversary initialization 

2. Perturbation optimization



Motivation
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Adversary initialization

Synonym substitution

Original text

The label changes, indicating that 
the word ‘love’ is important

The label has not changed, indicating 
that the word ‘movie’ is less important

We learn the importance of each word based on the changes of 
label which can guide us to minimize the word perturbation 

（label: negative）
I love the movie a lot

（label: positive）
I like the film a lot

（label: positive）
I like the film a lot

（label: negative）
I love the movie a lot

（label: positive）
I like the movie a lot

（label: negative）
I love the film a lot



TextHacker: Symbols and Definitions
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• Candidate set 𝐶𝐶 𝑤𝑤𝑖𝑖 : For each word 𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥, we construct 
the candidate set 𝐶𝐶 𝑤𝑤𝑖𝑖 containing its top 𝑚𝑚 nearest 
synonyms according to the distance in the embedding space.

• Weight table 𝑊𝑊 : A matrix with the shape of (𝑛𝑛,𝑚𝑚 + 1) with 
all 0s, in which each item 𝑊𝑊𝑖𝑖,𝑗𝑗 represents the word importance 
of �𝑤𝑤𝑖𝑖,𝑗𝑗 ∈ 𝐶𝐶 𝑤𝑤𝑖𝑖 and 𝑊𝑊𝑖𝑖,: = ∑𝑗𝑗=0𝑛𝑛 𝑊𝑊𝑖𝑖,𝑗𝑗 denotes the position 
importance of word 𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥.

• 𝜹𝜹-neighborhood 𝑵𝑵𝜹𝜹 (𝒙𝒙) : A set of texts with at most δ 
different words from the sample x:

𝑁𝑁𝛿𝛿 𝑥𝑥 = 𝑥𝑥𝑘𝑘 ∑𝑖𝑖=1𝑛𝑛 𝟙𝟙 𝑤𝑤𝑖𝑖𝑘𝑘 ≠ 𝑤𝑤𝑖𝑖 ≤ 𝛿𝛿
where 𝑤𝑤𝑖𝑖𝑘𝑘 ∈ 𝑥𝑥𝑘𝑘 ,𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥 and 𝛿𝛿 is the maximum radius of the 

neighborhood.  



TextHacker: Adversary Initialization
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We randomly substitute each word with a candidate word to 
craft a new text until we find an adversarial example. 



TextHacker: Perturbation Optimization
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We adopt the hybrid local search algorithm with the weight 
table, a population-based algorithm that contains local search,
weight update and recombination  operators, to minimize the 
adversary perturbation.

• Local search greedily substitutes unimportant word with the original 
word or critical word using the weight table to search for better 
adversarial example from the δ-neighborhood.

• Weight update highlights the important words and positions by 
assigning different reward for each operated word, which helps the local 
search select more critical positions and synonyms to substitute.

• Recombination crafts non-improved solutions by randomly mixing two 
adversarial examples, which globally changes the text to avoid poor 
local optima.  



TextHacker: Perturbation Optimization
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Local Search: 
1. We fist sample several (at most δ) words

�𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡 ∈ 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 with the probability 𝑝𝑝𝑖𝑖 from 

all the perturbed words in 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎.

𝑝𝑝𝑖𝑖 =
1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)

∑𝑖𝑖=1
𝑛𝑛 [1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)]

2. Then, we substitute each chosen word 
�𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡 with the original word �𝑤𝑤𝑖𝑖

0 or with 

an arbitrary word �𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡+1 ∈ 𝐶𝐶(𝑤𝑤𝑖𝑖) using 

the probability 𝑝𝑝𝑖𝑖,𝑗𝑗𝑡𝑡+1equally to generate 
a new sample 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 .

𝑝𝑝𝑖𝑖 =
1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)

∑𝑖𝑖=1
𝑛𝑛 [1 − 𝜎𝜎(𝑊𝑊𝑖𝑖.:)]



TextHacker: Perturbation Optimization
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Weight Update updates the weight table according to the 
results obtained by local search.

Given an adversarial example 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 at 𝑡𝑡-th iteration with the generated 
adversary 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 by local search, we update the word importance of each 

operated word �𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡 ∈ 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 and �𝑤𝑤𝑖𝑖

𝑗𝑗𝑡𝑡+1 ∈ 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 , and the position importance 
of 𝑤𝑤𝑖𝑖 using the following rules:

Rule I:  For each replaced word �𝑤𝑤𝑖𝑖
𝑗𝑗𝑡𝑡+1, if 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 is still adversarial, it has 

positive impact on the adversary generation. So we increase its weight 
W𝑖𝑖,𝑗𝑗𝑡𝑡+1, and vice versa.

Rule II: For each operated position 𝑖𝑖, if 𝑥𝑥𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎 is still adversarial, it has little 
impact on the adversary generation. So we decrease the position weight 
W𝑖𝑖,: , and vice versa.



TextHacker: Perturbation Optimization
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In Summary: 
We first utilize local search to construct an initial population. 

Subsequently, we iteratively adopt recombination as well as local search 
to minimize the adversary perturbation, and update the weight table after 
each local search



Experimental Settings

• Dataset: AG’s News, IMDB, MR, Yelp and Yahoo! Answers
datasets for text classification. SNLI and MultiNLI dataset for 
textual entailment.

• Models: WordCNN, WordLSTM and BERT for text 
classification. BERT for textual entailment.

• Baselines: Two hard-label attacks, i.e., HLBB and TextHoaxer 
and two score-based attacks, i.e., GA and PSO for reference.

• Hyper-parameters: Neighborhood size 𝛿𝛿 = 5, reward 𝑟𝑟 = 1, 
population size 𝑆𝑆 = 4, maximum number of local search 𝑁𝑁 = 8.
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Experimental Results
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• Better attack performance than existing 
hard-label attacks.

• Comparable or even better attack 
performance than the advanced score-
based attacks.



Experimental Results
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TextHacker consistently exhibits better attack performance under 
various query budgets



Experimental Results
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The evaluation on adversary quality demonstrates the high
lexicality, semantic similarity and fluency of the generated 
adversarial examples of TextHacker



Experimental Results
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The evaluation on real-world applications demonstrates 
TextHacker is more practical in real-world scenarios.



Summary
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• Propose a novel text hard-label attack, called TextHacker, which 
captures the words that have higher impact on the adversarial 
example via the changes on prediction label to guide the search 
process at the perturbation optimization stage. 

• Extensive evaluations for two typical NLP tasks, namely text 
classification and textual entailment, using various datasets and 
models demonstrate that TextHacker achieves higher attack 
success rate and lower perturbation rate than existing hard-label 
attacks and generates higher-quality adversarial examples. 
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