

Admix: Enhancing the Transferability of Adversarial Attacks

Xiaosen Wang¹, Xuanran He², Jingdong Wang³, Kun He¹ ¹Huazhong University of Science and Technology ²Nanyang Technological University, ³Microsoft Research Asia Contact: xiaosen@hust.edu.cn Homepage: https://xiaosen-wang.github.io/

9/25/2021

Adversarial examples are **indistinguishable** from legitimate ones by adding small perturbations, but lead to **incorrect model prediction**.

202

Transferability: adversarial examples generated for one model can still fool other models, that enables **black-box attacks** in the real-world applications without any knowledge of target model.

Background: existing attacks (*e.g.* PGD, CW, etc.) have exhibited great effectiveness, but with **low transferability**.

Related works

To further enhance the transferability of gradient-based attacks, various input transformations have been proposed:

- DIM [Xie et al., 2019]: Randomly resize the image and add padding for gradient calculation.
- TIM [Dong et al., 2019]: Accumulate the gradient on a set of translated images. To approximate this process, TIM convolves the gradient of original image with a predefined kernel.
- SIM [Lin et al., 2020]: Accumulate the gradient on a set of scaled images.

Various momentum based attack [Dong et al., 2018] and ensemble model attack [Liu et al., 2017], attacking multiple different models simultaneously, also enhances the transferability.

Motivation

Existing input transformations are all applied on **single input image**. Could we further improve the transferability by **incorporating the information from other categories**?

Mixup aims to improve the model generalization by interpolating two randomly sampled samples (x, y) and (x', y') with $\lambda \in [0,1]$:

$$\tilde{x} = \lambda \cdot x + (1 - \lambda) \cdot x', \ \tilde{y} = \lambda \cdot y + (1 - \lambda) \cdot y'$$
 (1)

Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v 3_{ens4}	IncRes-v 2_{ens}
MI-FGSM	100.0	43.6	42.4	35.7	13.1	12.8	6.2
Mixup	71.8	44.2	41.1	39.0	13.5	13.4	7.2

Table 1: Attack success rates (%) of MI-FGSM and mixup transformation. The adversaries are crafted on Inc-v3 model.

Directly applying *mixup* for the gradient calculation improves the transferability of crafted adversaries slightly but **degrades the attack performance significantly under white-box setting**

Admix

The reason why *mixup* degrades the attack performance:

- There is no difference between x and x' which might adopt **too much information from the add-in image** x'.
- *Mixup* mixes the labels, introducing the gradient of **other category** for update.

To utilize the information of images from other category without harming the attack performance, we propose *admix* operation:

$$\tilde{x} = \gamma \cdot x + \eta' \cdot x' = \gamma \cdot (x + \eta \cdot x') \quad (2)$$

Based on *admix*, we propose an *Admix* attack method, which **calculates the** gradient on a set of admixed images at each iteration:

$$\bar{g}_{t+1} = \frac{1}{m_1 \cdot m_2} \sum_{x' \in X'} \sum_{i=1}^{m_1 - 1} \nabla_{x_t^{adv}} J(\gamma_i \cdot (x_t^{adv} + \eta \cdot x'), y; \theta)$$
(3)

It is noted that **SIM is a special case of** *Admix* when $\eta = 0$.

Admix v.s. Mixup

Both *admix* and *mixup* generate a mixed from an image pair x and x'. The differences are summarized as follows:

- **Different goal**: The goal of *mixup* is to improve the generalization of the trained DNNs while *admix* aims to generate more transferable adversarial examples.
- **Different strategy**: The *mixup* treats *x* and *x'* equally and also mixes the label of *x* and *x'*. In contrast, *admix* treats *x* as the primary component and combines a small portion of *x'*, at the same time maintains the label of *x*.

2021

Figure 1: Illustration of the mechanisms in the input space of *mixup* and *admix*. x denotes the input image and x' the randomly sampled image. x_0 denotes the origin where all pixel values are 0s and \tilde{x} is a possible transformed image. The green line and green triangle denotes all the possible transformed images by *mixup* and *admix*, respectively.

Different interpolated image: The *mixup* linearly interpolates x and x' while *admix* does not have such constraint, leading to more diverse transformed images.

Experimental Settings

• Dataset: 1,000 clean images from ILSVRC 2012 validation set

- Models: Inc-v3, Inc-v4, IncRes-v2, Res-v2-152
- Defense models:
 - Ensemble AT: Inc-v3_{ens3}, Inc-v3_{ens4}, IncRes-v2_{ens}
 - NIPS 2017 top3 defense: HGD, R&P, NIPS-r3
 - Input transformation: JPEG, Bit-Red, FD
 - Certified defense: RS, ARS
 - Denoiser: NRP
- Baselines: MI-FGSM, DIM, TIM, SIM
- Attack setting: $\epsilon = 16$

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v 3_{ens4}	IncRes-v 2_{ens}
	DIM	99.0*	64.3	60.9	53.2	19.9	18.3	9.3
	TIM	100.0*	48.8	43.6	39.5	24.8	21.3	13.2
Inc-v3	SIM	100.0*	69.4	67.3	62.7	32.5	30.7	17.3
	Admix	100.0*	82.6	80.9	75.2	39.0	39.2	19.2
	DIM	72.9	97.4*	65.1	56.5	20.2	21.1	11.6
	TIM	58.6	99.6 *	46.5	42.3	26.2	23.4	17.2
Inc-v4	SIM	80.6	99.6 *	74.2	68.8	47.8	44.8	29.1
	Admix	87.8	99.4*	83.2	78.0	55.9	50.4	33.7
	DIM	70.1	63.4	93.5*	58.7	30.9	23.9	17.7
	TIM	62.2	55.4	97.4*	50.5	32.8	27.6	23.3
IncRes-v2	SIM	84.7	81.1	99.0*	76.4	56.3	48.3	42.8
	Admix	89.9	87.5	99.1 *	81.9	64.2	56.7	50.0
	DIM	75.8	69.5	70.0	98.0*	35.7	31.6	19.9
	TIM	59.3	52.1	51.8	99.3*	35.4	31.3	23.1
Res-101	SIM	75.2	68.9	69.0	99.7 *	43.7	38.5	26.3
	Admix	85.4	80.8	79.6	99.7 *	51.0	45.3	30.9

Table 2: Attack success rates (%) on seven models under single model setting with various single input transformations. The adversaries are crafted on Inc-v3, Inc-v4, IncRes-v2 and Res-101 model respectively. * indicates white-box attacks.

Experimental Results

No ICCV OCTOBER 11-17

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v 3_{ens3}	$Inc-v3_{ens4}$	$IncRes-v2_{ens}$
Inc. y2	SI-DIM	98.9*	85.0	81.3	76.3	48.0	45.1	24.9
me-v5	Admix-DIM	99.8 *	90.5	87.7	83.5	52.2	49.9	28.6
Inc. v4	SI-DIM	89.3	98.8*	85.6	79.9	58.4	55.2	39.3
mc-v4	Admix-DIM	93.0	99.2 *	89.7	85.2	62.4	60.3 39	39.7
IncDec v2	SI-DIM	87.9	85.1	97.5*	82.9	66.0	59.3	52.2
merces-v2	Admix-DIM	90.2	88.4	98.0 *	85.8	70.5	63.7	55.3
Pag 101	SI-DIM	87.9	83.4	84.0	98.6*	63.5	57.5	42.0
Res-101	Admix-DIM	91.9	89.0	89.6	99.8 *	69.7	62.3	46.6

(a) Attack success rates (%) on seven models by SIM and Admix integrated with DIM.

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
Inc. v2	SI-TIM	100.0*	71.8	68.6	62.2	48.2	47.4	31.3
Inc-v5	Admix-TIM	100.0*	83.9	80.4	74.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.2	
Inc. v4	SI-TIM	78.2	99.6*	71.9	66.1	58.6	55.4	45.1
Inc-v4	Admix-TIM	87.4	99.7* 82.3 77.0 68.1 65.3	53.1				
InoDoo v2	SI-TIM	84.5	82.2	98.8 *	77.4	71.6	64.7	61.0
Inckes-v2	Admix-TIM	90.2	88.2	98.6*	83.9	78.4	73.6	70.0
B as 101	SI-TIM	74.2	69.9	70.2	99.8 *	59.5	54.5	42.8
Kes-101	Admix-TIM	83.2	78.9	80.7	99.7*	67.0	62.5	52.8

(b) Attack success rates (%) on seven models by SIM and Admix integrated with TIM.

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v3ens4	IncRes-v2 $_{ens}$
Inc. v2	SI-TI-DIM	99.1*	83.6	80.8	76.7	65.2	63.3	46.5
Inc-v5	Admix-TI-DIM	99.9*	89.0	87.0	83.1	72.2	Inc-v3 _{ens4} 63.3 71.1 68.2 71.9 74.2 78.0 73.5 77.4	52.4
Inc. v4	SI-TI-DIM	87.9	98.7*	83.0	77.7	72.4	68.2	57.5
IIIC-V4	Admix-TI-DIM	90.4	99.0 *)* 87.3 82.0 75.3 71	71.9	61.6		
InoDoo v2	SI-TI-DIM	88.8	86.8	97.8 *	83.9	78.7	74.2	72.3
Incres-v2	Admix-TI-DIM	90.1	89.6	97.7*	85.9	82.0	78.0	76.3
D 101	SI-TI-DIM	84.7	82.2	84.8	99.0*	75.8	73.5	63.4
KCS-101	Admix-TI-DIM	91.0	87.7	89.2	99.9 *	81.1	77.4	70.1

(c) Attack success rates (%) on seven models by SIM and Admix integrated with TI-DIM.

Table 3: Attack success rates (%) on seven models under single model setting with various combined input transformations. The adversaries are crafted on Inc-v3, Inc-v4, IncRes-v2 and Res-101 model respectively. * indicates white-box attacks.

Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v 2_{ens}
DIM	99.4*	97.4*	94.9*	99.8*	58.1	51.1	34.9
TIM	99.8*	97.9*	95.2*	99.8*	62.2	56.8	48.0
SIM	99.9*	99.3*	98.3*	100.0*	78.8	73.9	59.5
Admix	100.0*	99.6 *	99.0 *	100.0*	85.5	80.9	67.8
SI-DIM	99.7 *	98.9*	97.7*	99.9*	85.2	83.3	71.3
Admix-DIM	99.7*	99.5 *	98.9 *	100.0*	89.3	87.8	79.0
SI-TIM	99.7 *	99.0*	97.6*	100.0*	87.9	85.2	80.4
Admix-TIM	99.7*	99.1 *	98.1 *	100.0*	91.8	89.7	85.8
SI-TI-DIM	99.6*	98.9 *	97.8*	99.7*	91.1	90.3	86.8
Admix-TI-DIM	99.7 *	98.9 *	98.3 *	100.0*	93.9	92.3	90.0

Table 4: Attack success rates (%) on seven models under ensemble-model setting with various input transformations. The adversaries are crafted on the ensemble model, *i.e.* Inc-v3, Inc-v4, IncRes-v2 and Res-101. * indicates white-box attacks.

Attack	HGD	R&P	NIPS-r3	Bit-Red	FD	JPEG	RS	ARS	NRP	Average
SI-TI-DIM	91.4	88.0	90.0	75.7	88.0	93.2	69.2	46.4	77.1	79.9
Admix-TI-DIM	93.7	90.3	92.4	80.1	91.9	95.4	74.9	51.4	80.7	83.3

Table 5: Attack success rates (%) on nine extra models with advanced defense by SI-TI-DIM and *Admix*-TI-DIM respectively. The adversaries are crafted on the ensemble model, *i.e.* Inc-v3, Inc-v4, IncRes-v2 and Res-101.

R ICCV OCTOBER 11-17

Summary

- Propose the *admix* operation.
- Introduce a new input transformation based attack *Admix* which **firstly incorporates the information from other category**.
- Achieve **SOTA** attack transferability on ImageNet against various models with **defenses** in different scenario.

Thanks!

Xiaosen Wang¹, Xuanran He², Jingdong Wang³, Kun He¹ ¹Huazhong University of Science and Technology ²Nanyang Technological University, ³Microsoft Research Asia Contact: xiaosen@hust.edu.cn Homepage: https://xiaosen-wang.github.io/