



Figure 2: The average attack success rates (%) of I-FGSM and MI-FGSM w/wo the gradient regularization on seven black-box models. The adversarial examples are generated on Inc-v3.

Boosting Adversarial Transferability by Achieving Flat Local Maxima

Zhijin Ge¹, Hongying Liu², Xiaosen Wang³, Fanhua Shang², Yuanyuan Liu¹ ¹Xidian University ²Tianjin University ³Huawei Singular Security Lab

Contributions

 \succ To the best of our knowledge, it is the first work that empirically validates that adversarial examples located in flat regions have good transferability.

- > We propose a novel attack called Penalizing Gradient Norm (PGN), which can effectively generate adversarial examples at flat local regions with better transferability.
- \blacktriangleright Empirical evaluations show that PGN can significantly improve the attack transferability on both normally trained models and adversarially trained models, which can also be seamlessly combined with various previous attack methods for higher transferability.

• Approximate solution:

$$\mathcal{L}(x^{adv},y; heta)pprox J(x',y; heta)-\lambda\cdot\|
abla_{x'}J(x',y; heta)\|_2, \quad ext{s.t.} \quad x'\in\mathcal{B}_\zeta(x^{adv}).$$

$${}_{dv}\mathcal{L}(x^{adv},y; heta) pprox
abla_{x'}J(x',y; heta) - \lambda \cdot
abla_{x'}^2 J(x',y; heta) \cdot rac{
abla_{x'}J(x',y; heta)}{\|
abla_{x'}J(x',y; heta)\|_2}.$$

• Finite Difference Method:

$$abla_x^2 J(x,y; heta) \cdot v pprox rac{
abla_x J(x+lpha \cdot v,y; heta) -
abla_x J(x,y; heta)}{lpha}, v = -rac{
abla_x J(x,y; heta)}{\|
abla_x J(x,y; heta)\|_2}.$$

• Gradient update:

$$abla_{x_t^{adv}}\mathcal{L}(x_t^{adv},y; heta)pprox (1-\delta)\cdot
abla_{x_t'}J(x_t',y; heta)+\delta\cdot
abla_{x_t'}J(x_t'+lpha\cdot v,y; heta), \quad \delta=rac{\lambda}{lpha}$$

• Generate adversarial examples:

$$egin{aligned} &=rac{1}{N}\cdot\sum_{i=0}^{N}ig[(1-\delta)\cdot
abla_{x_{t}'}J(x_{t}',y; heta)+\delta\cdot
abla_{x_{t}'}J(x_{t}'+lpha\cdot v,y; heta)ig],\ g_{t+1}&=\mu\cdot g_{t}+rac{ar{g}}{\|ar{g}\|_{1}}, \quad g_{0}=0.\ x_{t+1}^{adv}&=\Pi_{\mathcal{B}_{\epsilon}(x)}ig[x_{t}^{adv}+lpha\cdot ext{sign}(g_{t+1})ig], \quad x_{0}^{adv}&=x. \end{aligned}$$

Table 1: The untargeted attack success rates (%) of various gradient-based attacks in the single model setting. Here * indicates the white-box model.

		\mathcal{O}		\mathcal{O}				
Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v 3_{ens3}	Inc-v 3_{ens4}	IncRes-v2 _{ens}
Inc-v3	MI	100.0±0.0*	51.0±0.47	45.8 ± 0.60	49.0±0.24	22.6±0.52	22.0±0.35	10.9±0.24
	NI	$100.0{\pm}0.0{*}$	$61.4 {\pm} 0.42$	$59.6 {\pm} 0.54$	$57.2 {\pm} 0.18$	22.5 ± 0.37	22.7 ± 0.35	11.5 ± 0.26
	VMI	$100.0{\pm}0.0{*}$	$74.8 {\pm} 0.58$	$69.9 {\pm} 0.92$	$65.5 {\pm} 0.67$	$41.6 {\pm} 0.54$	$41.6 {\pm} 0.54$	25.0 ± 0.34
	EMI	$100.0{\pm}0.0{*}$	$80.7 {\pm} 0.58$	$77.1 {\pm} 0.37$	$72.4 {\pm} 0.83$	$33.0 {\pm} 0.61$	$31.9 {\pm} 0.49$	$17.0 {\pm} 0.48$
	RAP	99.9±0.10*	$84.5 {\pm} 0.69$	$79.3 {\pm} 0.47$	$76.5 {\pm} 0.65$	$56.9{\pm}0.84$	$51.3{\pm}0.62$	31.9 ± 0.35
	PGN	$100.0 {\pm} 0.0{*}$	90.6±0.67	89.5±0.75	$81.2{\pm}0.68$	64.6±0.75	65.6±0.94	45.3±0.77
Inc-v4	MI	57.2 ± 0.36	100.0±0.0*	46.1 ± 0.14	51.5 ± 0.33	19.1 ± 0.46	18.4 ± 0.23	10.2 ± 0.36
	NI	$62.8 {\pm} 0.43$	$100.0 {\pm} 0.0{*}$	52.7 ± 0.34	$56.7 {\pm} 0.19$	19.2 ± 0.25	$18.3 {\pm} 0.37$	11.7 ± 0.29
	VMI	$77.6 {\pm} 0.65$	$99.8 {\pm} 0.10 {*}$	$69.8 {\pm} 0.41$	66.7 ± 0.33	41.1 ± 0.87	41.2 ± 0.54	27.0 ± 0.24
	EMI	$84.2 {\pm} 0.62$	$99.7 {\pm} 0.10 {*}$	$75.0 {\pm} 0.70$	$74.4 {\pm} 0.64$	31.5 ± 0.44	$28.0 {\pm} 0.65$	16.2 ± 0.36
	RAP	85.3±0.74	$99.5 {\pm} 0.21 {*}$	$79.5 {\pm} 0.62$	77.2 ± 0.42	$45.2 {\pm} 0.69$	$46.8{\pm}0.48$	29.3 ± 0.51
	PGN	91.2±0.58	99.6±0.15*	87.6±0.74	83.5±0.53	$67.0{\pm}0.68$	$64.2{\pm}0.63$	49.1±0.82
IncRes-v2	MI	58.2 ± 0.21	52.4 ± 0.41	99.3±0.21*	50.7 ± 0.26	22.0 ± 0.37	22.0 ± 0.31	13.8 ± 0.43
	NI	60.3 ± 0.35	57.1 ± 0.17	$99.5 {\pm} 0.17 {*}$	$55.3 {\pm} 0.35$	18.3 ± 0.18	19.3 ± 0.29	12.1 ± 0.16
	VMI	$78.2 {\pm} 0.64$	$77.0 {\pm} 0.57$	99.1±0.36*	$66.0 {\pm} 0.48$	$47.6 {\pm} 0.69$	$43.3 {\pm} 0.36$	37.7 ± 0.37
	EMI	$85.2 {\pm} 0.78$	$83.3 {\pm} 0.29$	99.7±0.18*	$74.0 {\pm} 0.56$	$38.4 {\pm} 0.48$	$33.8 {\pm} 0.53$	24.1 ± 0.48
	RAP	$87.1 {\pm} 0.75$	$84.2 {\pm} 0.45$	$99.4 {\pm} 0.28 {*}$	$79.4 {\pm} 0.64$	50.3 ± 0.47	$49.8{\pm}0.89$	40.2 ± 0.54
	PGN	92.0±0.69	92.3±0.63	99.8±0.10 *	$83.5 {\pm} 0.41$	$74.6 {\pm} 0.75$	71.5 ± 0.64	$66.62 {\pm} 0.58$
Res-101	MI	51.5 ± 0.26	42.2 ± 0.35	36.3 ± 0.24	100.0±0.0*	18.7 ± 0.32	16.6 ± 0.14	9.0 ± 0.22
	NI	55.6 ± 0.35	46.9 ± 0.41	$40.8 {\pm} 0.28$	$100.0 {\pm} 0.0{*}$	17.5 ± 0.57	17.6 ± 0.42	9.2 ± 0.24
	VMI	$75.0 {\pm} 0.40$	$69.2 {\pm} 0.59$	$63.0 {\pm} 0.84$	$100.0 {\pm} 0.0{*}$	$35.9 {\pm} 0.41$	$35.7 {\pm} 0.87$	24.1 ± 0.57
	EMI	$74.3 {\pm} 0.65$	$71.7 {\pm} 0.47$	$62.6 {\pm} 0.29$	$100.0 {\pm} 0.0{*}$	$25.7 {\pm} 0.74$	$24.6{\pm}0.98$	13.3 ± 0.68
	RAP	$80.4 {\pm} 0.75$	$75.5 {\pm} 0.56$	$68.0 {\pm} 0.84$	$99.9 {\pm} 0.10 {*}$	$40.3 {\pm} 0.47$	$39.9{\pm}0.73$	$30.4{\pm}1.03$
	PGN	$86.2{\pm}0.84$	83.3±0.66	77.8±0.69	100.0±0.0*	63.1±1.32	62.9±0.74	$\textbf{50.8}{\pm \textbf{0.88}}$

Table 2: Comparison of the approximation effect between directly optimizing the second-order Hessian matrix and using the Finite Difference Method (FDM) to approximate. "Time" represents the total running time on ,000 images, and "Memory" represents the computing memory size.

Attack	H_m F
I-FGSM	× ✓
	44.01 49.44 49.46 49.09 49.07 41.09 49.07 41.09 49.07 41.09 49.07 40.0 49.07 40.0 49.07 40.0 49.07 40.0 49.07 40.0 40.07 40.00
	44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0
(a) MI-F	GSM
Figure 3	
randoml	v sam

Experimental Results

FDM Inc-v3 Inc-v4 IncRes-v2 Res-101 Res-152 Time (s) Memory (MiB) 100.0* 27.8 38.1 35.2 52.31 1631 19.1 47.0 45.5 7887 100.0* 39.2 30.2 469.54 **100.0*** 37.9 28.6 45.7 44.6 1631 96.42 (b) NI-FGSM (c) VMI-FGSM (d) EMI-FGSM (e) RAP (f) PGN

sualization of loss surfaces along two random directions for two randomly sampled adversarial examples on the surrogate model (Inc-v3).