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Introduction of transfer-based adversarial attacks

Assumption: The truncation of gradient introduced by non-linear 
layers in the backward propagation process decays the adversarial 
transferability.
Verification: Randomly masking the gradient decays the 
transferability while recovering the gradient of ReLU or max-pooling 
layers improves the transferability.

• Dnns’ susceptibility to adversarial examples, which are carefully 
crafted by adding imperceptible perturbations to natural 
examples, has raised significant concerns regarding their security.

• Transfer-based attacks generate adversarial examples on the 
surrogate model to fool the target models.

• We find that the gradient truncation introduced by non-linear 
layers undermines the transferability and modify the backward 
propagation so as to generate more transferable adversarial 
examples.

Assumption & Verification

Methodology Ablation Study
To diminish the probability of gradient truncation, we modify the
gradient calculation for the ReLU activation function and max-
pooling in the backward propagation procedure as follows:
• Use the derivative of SiLU to calculate the gradient 

of ReLU during the backward propagation process, 
i.e., 𝜕𝜕𝑧𝑧𝑖𝑖+1

𝜕𝜕𝑧𝑧𝑖𝑖
= 𝜎𝜎 𝑧𝑧𝑖𝑖 ⋅ 1 + 𝑧𝑧𝑖𝑖 ⋅ 1 − 𝜎𝜎 𝑧𝑧𝑖𝑖 .

• Use the softmax function to calculate the gradient 
within each window 𝑤𝑤 of the max-pooling 
operation:

𝜕𝜕𝑧𝑧𝑘𝑘+1
𝜕𝜕𝑧𝑧𝑘𝑘 𝑖𝑖,𝑗𝑗,𝑤𝑤

=
𝑒𝑒𝑡𝑡⋅𝑧𝑧𝑘𝑘,𝑖𝑖,𝑗𝑗

∑𝑣𝑣∈𝑤𝑤 𝑒𝑒𝑡𝑡⋅𝑣𝑣

Experiment results
Untargeted attack success rates (%) of various adversarial attacks on nine 
models when generating the adversarial examples on ResNet-50 w/wo various 
model-related methods.

We perform parameter studies on two crucial aspects: 
the position of the first ReLU layer to be modified and 
the temperature coefficient t for max-pooling.

Conclusion & Limitation
• It is the first work that proposes and empirically 

validates the detrimental effect of gradient truncation 
on adversarial transferability. This finding sheds new 
light on improving adversarial transferability and 
provides new directions to boost model robustness.

• We propose a model-related attack called BPA to 
mitigate the negative impact of gradient truncation and 
enhance the relevance of gradient between the loss 
function and the input.
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• Extensive experiments on 
ImageNet dataset demonstrate 
that BPA could significantly boost 
various untargeted and targeted 
transfer-based attacks.
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(a) Randomly mask the gradient
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(b) Recover the gradient of ReLU
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(c) Recover the gradient of max-pooling
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Attacker Method  Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

N/A 12.52 9.70 25.82 32.20 13.18 13.82 7.64 7.60 4.14
LinBP 13.52 10.28 27.60 34.36 14.16 15.12 8.32 7.88 4.20
Ghost 13.18 9.72 25.78 32.50 12.80 13.68 8.12 7.90 4.48
BPA 26.24 27.06 47.98 58.22 34.08 31.42 15.52 14.06 8.78

N/A 19.74 15.32 37.02 43.42 21.16 23.02 11.46 10.08 5.96
LinBP 20.28 15.24 36.84 44.44 20.66 23.28 10.92 9.52 5.48
Ghost 19.88 15.34 36.44 43.20 21.84 24.06 11.54 10.30 6.00
BPA 36.88 29.98 61.10 68.58 45.98 43.06 21.44 17.68 11.94

N/A 37.20 29.58 58.20 62.20 40.88 38.86 21.14 17.62 11.10
LinBP 36.18 28.86 55.40 62.46 38.38 39.14 19.20 17.18 10.92
Ghost 36.94 29.75 58.32 62.16 41.32 38.96 21.18 17.58 11.20
BPA 51.60 43.00 74.08 78.74 59.54 54.74 32.88 30.04 20.18

N/A 16.08 13.8 31.28 42.62 19.72 25.16 8.76 7.70 4.62
LinBP 17.08 14.54 32.74 44.40 20.16 27.08 8.44 7.92 4.54
Ghost 16.56 14.08 31.80 41.90 20.12 25.98 8.84 7.84 4.76
BPA 29.70 25.06 50.84 61.52 38.84 41.20 15.30 12.36 8.30

N/A 33.52 26.38 50.86 60.26 30.94 30.78 17.06 14.52 8.78
LinBP 35.70 28.08 53.76 63.52 32.32 34.18 18.64 16.10 9.36
Ghost 33.52 25.92 51.31 60.50 30.96 30.02 17.16 14.74 8.74
BPA 50.16 40.68 70.90 78.86 51.64 47.86 29.52 26.50 18.30
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(a) Attack success rate (%) of BPA using MI-FGSM by modifying 
the ReLU layers starting from the i-th layer. Here 3-0 indicates the 
first ReLU layer in the third stage
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(b) Attack success rate (%) of BPA using MI-FGSM with 
various temperature coefficients (0 ≤  t ≤  15) in Eq. (3) for 
the max-pooling layer
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